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L INTRODUCTION

Information on the local modes of motion in polymer molecules is of interest be-
cause such motion controls rapid relaxation processes.! Experimentally these relaxa-
tions can be probed in a number of ways, among them dielectric and NMR relaxzation
and fluorescence depolarization studies. The experimentally determined qt;antities,
such as frequency dependent dielectric susceptibility data, are related to time depen-
dent orientational correlation functions through Fourier transforms. On the fast time-

scale , conformational transitions pla;" a major role in the relaxation.



Recently a number of researchers have turned to computer simulations of polymer
models as a method of examining the relaxation properties directly.2~1° The models
used have varied from full, three-dimensional formulations to simple one-dimensional
models with rotational potentials that mimic polymeric systems. Simulation is used on
these.models to generate representative trajectories, so that the appropriate correlation

functions can be ca.lculated.'

Another route is to calculate the correlation functions analytically. Because of
the complexity of the probl;am, work in this direction has focused on one-dimensional
models such as that pictured in Fig. 1. This model consists of a series of vectors,
each situated in a plane perpendicular to a common axis. The vectors are free to
rotate in planes orthogonal to the axis, and they interact by way of a nearest neighbor
inter-vector pair potential. This model, with a simple one-fold cosine nearest neighbor
inter-vector potential, was first studied as a polymer model by Mandell'! using a high
temperature power geries expansion. Shore and Zwanzig'? have studied the same model
in the low temperature limit by expanding the potential in a pt;wer series to quadratic
terms and solving the resuiting harmonic problem. (The Shore-Zwanzig model has no
analogue of conformational transitions.) Mansfleld'? has completed analytical work
on this model with an r-fold cosine potential, drawing upon the coupled s;;ring and
dash-pot formulation of Clark and Zimm.!* The results of these studies have been

discussed and compared with Brownian dynamics simulations of the model by Cook

and Livornese.?



Recently Hall and Helfand'® have developed an approach to calculating time
dependent correlation functions which, when applied to polymeric systems, focuses
upon the rate of passage from one bond state energy minimum to another. In their
paper they solve exactly a model containing several of the essential features of models.
previc;usly studied by Weiner and Pear® and Helfand,”!® viz., a chain of two-state
elements. Certain systems .with three or more state elements are handled in an ap-
proximate way. In the work that follows we will apply techniques similar to that used
by Hall and Helfand, and develop a theory for the one-dimensional model in Fig. 1
with an r-fold rotational potential. It is to be emphasized that the theory relates to
the time correlation function of the adjacent vector angle differences or “bond states”
and not to the individual vector directions. The distinction between these quantities

will be discussed later. Comparison will be made with simulation results on the same

model to confirm the accuracy of the theory.

The next section reviews the theory with respect to its application to the problem
at hand. In section III the simulation results are presented and compared with the

theory. The last section offers a discussion of the results.



IL THEORY

Consider a chain of N vectors as described above and pictured in Fig. 1. Let the

directions of the vectors be denoted by {¢;} and their interaction potential by

N
U=— :T Z; cos(rd;) (1)

where
b = Pit1 — & (2)

and E is the barrier to transition, in units of ¥7, from one potential minimum to
another. Note that it is the set of {f;} by which the r potential minima are in-
dexed which corresponds to the ro'ta.tional angle minima defining conformations in a
polymer model (especially if » = 3). We are interested in understanding the relaxa-
tion phenomena of the system due to conformational changes, and thus would like to

calculate correlation functions of the type

Ci(t) = (cos [6i41(2) — 6:(0)] ) @)

Let us define the “state” of each 0; as p; = 0,1,...,r — 1 depending upon which
of the r potential wells (regions between maxima) the ¢; happens to be in. Consider

the following allowed transitions at the indicated rates: individual bond conformational

transitions



kizn; =1, rate Mo; ‘ (4a)

counterrotational, cooperative pair transitions, arising as a result of the systems efforts

to localize the motion involved in conformational transitions

Bkt (B £ 1)(Bj40 F 1), rate ). (48)

Any occurrence of z; outside of the range 0 to r — 1 is interpreted cyclically, p; =
4j 4= r. Further assume the chain of N vectors {#:} is periodic so that §; = ;. . We
can denote the full state of the system to be represented by p = (u1,...,4n5). There

are r¥ states.

We can now represent the correlation function Ci(t) as
6itt) = (eon { Zluers ()= w0} + o () — 0} ®

where 6;(t) has been replaced by 2%pu,(t) 4 a;(t). a;(t) is the deviation of 8;(t) from

the nearest well bottom. Define the correlation function

Si(t) = <°°3 [271'[#4+: (t) — u:(0)] D (6)

Note that the time for equilibration in a well is short compared to relaxations due to
transitions between wells. Therefore we can, to a good approximation, decouple the

and p states and rewrite Eq. (5) as
Ci(t) = Si(t)cos ey () — e:(0)] ). (7



The sine terms from the expansion of the cosine of a sum in Eq. (5) have averages

equal to zero. The average in Eq. (7) decays rapidly to {cos )® and we have
Ci(t) = Si(t){cos a)® (8)

where the average is taken over the extent of the well:

“+-x/r E “+x /r E
{cos a) = / cos a exp (— cos ra) da f exp (— cos ra) da. (9)
x/r 2 —-x/r 2

This expression can be easily evaluated numerically, and it is generally close to unity.

It should be emphasized that by reducing the problerﬁ from one dealing in the
continuous variable set {0;} to one of discrete states u we have limited ourselves to
obtaining information on a time scale long compared to the equilibration time in a
single well. This is not a serious limitation, however, since the details of short time

behavior are handled well by other means, as will be discussed later.

Additionally, we shall see that only the autocorrelation, Co(t) or Sy(t), are non-
gero. This fact can be deduced from the symmetry of the problem, but we will limit

ourselves to the explicit demonstration below. The differences between Cy(t) and Sy (),

which occur at short times, will be discussed later.

Let us denote the probability of state u at time ¢ by f(u, t), which may be regarded

as an rV dimensional vector f with elements f, (). In this notation the Master Equation

" can be written as



dr
= =Mt (10)

Mis a ¥V X rV matrix with elements M(u,u') = —Xo if # and p’ differ by the
state of a single element j, such that u; = u;. <4 1. There are also elements given by
M (g, ) = —\; if states p and ' differ only by a pair of elements, ! apart, such that
p; = p; £1and piy = ;4 F 1. More complicated transitions involving three
or more elements are neglected. All other off-diagonal terms are zero. The diagonal

elements are given by

M(p, p) = — E M(p, ). (11)
niokp

Alternatively M can be written in operator form as

N ©o
M= Z(xo(z—n;" —R; )+ )_M@E@—R} R, —R;'R;':,_,)) . (12)

Juml fom]
Note the index j is to be understood cyclically when outside the range of 1 to V. R;"
and R;™ are rotation operators on the p; index of a pure state j, raising or lowering it

by unity:

R?: l”lv'-”‘j’-'-’”N)'——l B1yeooy b5 :t]-,"'il‘N)- (13)

It is convenient to introduce r dimensional vectors referring only to site j, with a

set of basis functions | u);. For example, for r = 3

o)y = (é), 1), = (2)1 2), = G) (149)

J



and

We w.ill call the state

oy == )y = 1(%)
§=— g=—\:
' vr's vr\y

the ground state of element j, for reasons which will become clear.

In general, as a complete set of r basis vectors one may also use

|w)y = — ) e“* | n);
\/;u—o
2
w=—:-l:£, p=01...r—1

It follows then that

1 q 0!
jlw' |w); = :Z D fen =) (! | )y = bt

s

Additionally the | ); may be written in terms of | w); as

| ) = '1—23_""'" | w);.
r w

7

Note that the | w); are eigenstates of Rf: with eigenvalues exp(Fiw):

1 fw w
RE [w)y = — 3 [pt1); =T |w).
T

(15)

(16)

a7

(18)

(19)

(20)

(21)



For example, for r = 3 and

1 (1
I w)i == ﬁ(:ﬁiu )j (22)
one finds
I L ed e« (1Y _.
sio-H5)-FE) - -

Note also that w = O corresponds to the ground state | 0);.

Now consider 7V dimensional basis vectors for developihg properties of the whole

chain. These can be expressed as the direct product
| w)= | wyweewy)=| w1 ) ® |ws)2a @ ... | wn)N- (24)

We generally only exhibit the non-zero w's . For example, a vector with only one non-
zero w, that being at the jth position, is written as " | 0...0w0...)= | w@j). (Note the

1
difference from the r-dimensional vector | w);.) The ground state is | 0) = r—,h-;()
1

Since M is written in terms of the R operators, | w@j) is an eigenstate corresponding

to an eigenvalue obtained by substituting exp(Fiw ) for l’l,.i in M.

In order to calculate correlation functions let us define a function A, ;(u) such

that

Ay j (B) = ‘sw.v ’ : (25)

i.e., it has value unity when the jth element is in state v, irrespective of the states of

the other elements. A, ;(u) may be considered a vector A, ; labeled with u:



Avy =2 A ;@) e (26)
»

Ay = C) ® C) Q- 1v); ® C) . ~(27)

Using Eqs. (16), (20),.and (24) we then have

Note that

A, ; = ru'!_'l'-l— E e“’ | w@j). (28)
T w

Let us calculate
(Av’.i '(I‘(t)) Ay i ("'(0))) = Z Z Av'.:" (#')Av.j (ﬂ')f (F"’s t I #)f eq (I‘)

=" A (WAL (W) | M| F‘),.LN
s u

= ,lz Y =" wiag | M | wey)

w w
5,',," sw(y—v') —mw)t 1
=r—2§°e ( e (w) +;2-. (29)
Here m(w) is an eigenvalue of M with eigenvector | w@j) ; ie.
m(w,) = (w@j | M | w@j)
— A — (™™ + et ) —2 ) N(e™ + et)

=
= 2A(1 — cos w, ). (30)

The subscript p is added in Eq. (30) to remind us that w is defined in terms of the

integer p in Eq. (18). A, the total rate of transitions, is given by

A=x°+2f:x,. | (31)

jaml

10



In order to evaluate the discrete state correlation function, S;(t), displayed in Eq.

-

(6), it is necessary to express the quantity to be averaged in terms of the variables 4, ;.

Let us first rewrite Eq. (6) using exponential notation as
51t) = {oxp ( 2wy my 00 )) e

where we ultimately intend to retain only the real parts. Since A, ; is unity if p; is in

state v and is zero otherwise, we can express Eq. (32) as

Si(t) = <,i Ayt (t) exp (21”” ) Z A, ;(0) exp( —2miv ))

{am0 ywm=Q

= Z Z (A"':J"'H (t)A,,'j (0» exp (w)- (33)

viemQ ye=0

Using Eqs. (18) and (29) and rearranging we have

Bt Z—:exp (—m{ws)t) Z ) exp (—(v—v')(p—l))]

pa=l 'amQ ywm0

+= E E exp (—(V —V)) (34)

viemQ van0

The term in square brackets is non-zero only if p = 1 since the r roots of unity sum
to zero. Thus, using Eq. (30), we have
27
Si(t) = 8,0 exp (—2A(1 ~ cos -r—)t ) (35)
Note that the theory predicts a single relaxation time regardless of the foldedness of

the potential. It can also be shown that higher order autocorrelation functions,

5= (cos ["’—’;ﬁlm(t) — (0] ]) (36)

7 = exp (—m(1 — cos "”’T") t). (27)

are given by



L SIMULATIONS

In order to check the theory, Brownian dynamics simmulations were performed on
the model. The method of Brownian dynamics simulation applied to this model has

been .described previously® and will be briefly reviewed here.

The set of equations to be solved has the form

d? ¢, _eu N ¢_ig$_¢' . .
@~ og Ta T L0 (38)

where 7 is the coefficient of friction associated with the motion of the vector through the
solvent and L,(t) represents the randomly fluctuating force of the solvent on individual

vectors. L;(t) is assumed to be Gaussian with first and second moments given by
_ (Li(t)) =0 (39)
(Li(t1)L;(82)) = 26T nbi;6(t1 — ta) (40)

In the highly viscous limit where the time steps used, At, are much larger than the
velocity relaxation times, the acceleration term may be dropped and Eq. (38) rewritten

to first order in At in a form suitable for computer simulation as

$ilt + Af) = 84() — ~2L At + L5,(at) (41)
7 0¢; n
where
At
B:(At) = A Li(t 4+ s)ds. (42)

B;(At) is characterized by a Gaussian probability such that!”

P(B;(At)) = (41rnkTAt)_’} exp (:Al[:l:(l"——e:x—)t]:) (43)

12



We scale the friction coefficient together with the time step by defining a reduced

time
kT
V=|—|t 44
(%) 2
so that Eq. (41) becomes
N = oufeth — LU AL
#ilt FAY) = 0ult') — g5 A + V20 b (45)

B;(At) is replaced by the scaled b;, whose values are governed by 2 Gaussian distribution
with variance equal to one. The simulations were based on Eq. (45) for systems of 100
vectors with periodic boundary conditions, and a time step At’ of .001. For simplicity

we have dropped the prime notation on ¢ in what follows.

The time dependent autocorrelation shown in Eq. (3) was calculated for a 5kT
barrier with both a 3-fold and 5-fold cosine potential and also for an 8%T barrier
with the 3-fold potential. Since the theory focuses on states {u#} rather than the
continuous variable {#} we have also calculat_;ed So(t) as displayed in Eq. (6) for the
3-fold 5k T system to show that it is in fact proportional to Cy(t) at all but short times.
Operationally, u,(t) is deflned to change value only when the ; passes through the
potential minimum of an adjacent well. Thus it is possible for a 8; to move from
one potential minimum over a barrier, part way down to the next minimum and back
again without changing the value of u;(t). This definition is consistent with that used
in the hazard analyses that will follow and is based upon earlier work by Helfand”*°

on systems with similar characteristics. At times greater than the minimum transition

13



time, Sp(t) and Cy(t) relax with the same time constant as shown in Fig. 2 for the
3-fold 5kT system. Note the differences at short times where the initial decay of Cy(t)
goes as exp(—t),!2 but shifts over rapidly to exp(—t/7) where r is the characteristic
conformational relaxation time. The ratio of Co(t) to So(t) is {cos a)>. For the 3-fold
5kT system the ratio varies from 0.95 to 0.é4 for times greater than about 0.5 time

units. This compares favorably with a value of 0.94 calculated from Eq. (9).

To apply the theory we need to know the value of A in Eq. {35). As will be shown
later, for these systems A is only slightly larger than )\,, the cooperative transitions
having much lower rates. If we treat the potential as quadratic with curvature v =
dmie

ir2E in the wells and at the barriers, Kramers’ theory!® as developed by Helfan

for polymeric systems gives for n = 1

[TYRN

T -
>\°= ;;-e E,

which is 4/3 times the simple Kramers expression for the single isolated barrier
problem. The factor of 4/3 is due to the frictional resistance of the chain tails.1?
A more exact expression for the multi-welled cosine potential of Eq. (1) has been

developed in the Appendix and gives for unit viscosity

= (5N srmiem)

where I4(E/2) is a zeroth order modified Bessel function. The use of the 4/3 factor

in this expression may not be rigorous since the factor was originally developed for a

14
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(47)



system with quadratic potentials. However the excellent agreement of Eq. (47) with

the simulation results discussed below is encouraging.

The value of A can also be estimated directly from the simulations by use of
hazard analysis as developed for polymer systems by Helfand.”? Basically one orders
the times for n transitions, from one well minimum to another, that take place during

the simulation. Then one plots the expectation value of the cumulative hazard for the

kth ordered transition,

against the transition time of the kth ordered transition. The rate of transition is the
asymptotic slope of this plot divided by two, since each transition from a well can occur
in two directions. Since the ¥ate obtained considers all transitions including those that
are part of a coupled transition we are measuring A rather than \o. The differences are
small however. Fiigure 3 shows the hazard plot for the 3-fold 54T simulation. The inset
shows that the plot does not intersect the origin, due to the initial transition time, ¢,
necessary for a movement from one well minimum to another. The first three columns
of Table I present rate values obtained from: the simple Kramers formula, Eq. (46);
from our revised formula, Eq. (47); and A from the hazard analyses for systems with

5kT barriers. Note the excellent agreement of our revised \;X with the hazard results.

Figure 4 shows plots of InCy (t) against ¢ for the systems studied. Note the linearity

indicating a single relaxation time. The slopes of these lines are simply the coefficients

15
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of t in Eq. (35). Thus the characteristic relaxation time 7 is

r= [u(1 — cos ?rl)]_l. (49)

The last three columns of Table I show: first r"X which uses A\5X calculated by
the revised Kramers’ formula to approximate A; then r* which is based upon the A.
extracted from the hazard plots; and finally 7¢ which was determined directly from the
correlation functions, Cy(t), obtained from the simulations. Agreement between the

simulation and theoretical results is in general good. The differences will be discussed

in the next section.

The hazard plots also give us an opportunity to estimate the fraction of correlated
transitions which occur. These can be of two types. First there is the possibility that a
bond, having made a transition, will find the environment unfavorable and immediately
move back. This is reflected in a somewhat enhanced slope in the hazard plot at short
times shown in Fig. 3. Helfand” has shown that the fraction of back reactions, c,, is
given by ¢o = 1—exp(—H7). H is the value of the asymptotic linear portion (dashed
in Fig. 3) of the hazard data at f;, the minimum transition time from well to well.

The values of ¢, are listed in Table II for the 5£7 barrier systems.

In order to probe correlated f{ransitions between neighboring bond states we need
to make hazard plots associated with neighbor transitions. The procedure is the
same except that the ordered times are the times for neighboring bonds to undergo

a transition measured from a zero of time based on the central bonds transition. As

16



described by Helfand” these plots are also linear except at short times as shown in Fig.
5. Only relatively short time data is shown for first(1), second(2), and third(3) neighbor
transitions. The linear portions of these plots have slopes twice that of the “auto”
hazard plots since each bond has two neighbors. The fraction of correlated transitions
is giv;n in a manner analogous to that for back reactions, namely ¢; = 1—exp(—H?}),
where H } is eva.luated at ¢ = 0. The results for the 3- and 5-fold systems with a barrier

. of 5kT are shown in Table II.

17



IV. DISCUSSION

Agreement of the relaxation times calculated only by theory(r*X) or by theory and
A from hazard analyses (r*) with those directly from the simulations (r°¢) is excellent.
The simulations give a somewhat longer relaxation time due partly to the fact that
the A obtained from the haﬂ.uu'd analysis counts as two transitions (one short time, the
other long) situations in which a vector pair, having made a transition, finds itself in
an unfavorable environment and reverses itself immediately. These paired transitions,
representing about 3 per cent(or c,) of the transitions, clearly do not contribute to the
long time rela.xa.tio_n of the system. This, coupled with the few percent uncertainty in

the values of A from the hazard analysis and 7° from the simulations show the theory

to be consistent with the simulation results.

Though of interest by itself, the correlation function C*(t) of Eq. (3) does not
relate to the usual experimentally observable quantities, since the #'s are rotational
bond angles. The relaxation of the ¢'s however, if interpreted as dipole ve‘ctors, can be
related to the frequency dependent dielectric response through the Fourier transform

of the derivative of the correlation function C?(t) where?°
C*(t) = (cos [4:(t) — #:(0)] ). (50)

Investigations of C*#(f) for this model have been recently presented by Cook and
Livornese®. Unfortunately no rigorous mathematical relationship giving C*(t) in terms

of C*(t) is evident. Additionally C#(t) involves a relaxation equivalent to a polymer

18



tumbling mode not present for C®(t) which involves only internal coordinates. Single
relaxation time decay, observed for C?(t), seem to be valid also for C*(t) at times
longer than about 0.5 time units, and is probably related to the transition rate from

well to well. For the 3-fold 5k T system the time constant 7 is about twice as large for

C‘(t)-as for C*(t).

As noted earlier, the present theoretical calculation cannot give the short time
behavior since it ignores tht; continuous nature of the # variable. The relaxations which
occur in the well before transition can probably be accurately described by a quadratic
expansion of the potential along the lines of Shore and Zwanzig'2. At very short times
where At € VAL, , CU(t) as well as C*(t) are governed only by the random force and

thus go as exp(—t).

As a final note let us mention two important differences between the one-
dimensional model studied here and three-dimensional systems, both as model simula-
tions and real physical systems. First we noted that for our one-dimensional system
coupled transitions were of relatively little importance. In three-dimensional models
Helfand, et al.,® have shown that correlated transitions with second neighbor bonds are
quite iﬁxporta.nt for understanding the local motions. Second, we note that the simple
exponential relaxation observed for this one-dimensional model with symmetric rota-
tional possibilities is not observed experimentally for real polymer systems. Significant

non-exponential behavior as measured, for example, by non-semicircular Cole-Cole

19



plots, is the rule rather than t;he exception. Viovy, Monnerie, and Brochon®' must in-
voke more than an exponential function to fit their fluorescence depolarization studies,
as must Connolly, Gordon and Jones?? for their NMR data. Contrasting the present
model with that of Hall and Helfand!® we see that such differences can arise from

the presence of the cis barrier. Under glassy conditions totally different mechanisms

probably have to be invoket:l.
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APPENDIX

For an arbitrary potential U with wells at points A and B separated by a barrier
at point C, Kramers'® has shown that in the case of high viscosity the rate of passage

of particles(in our case bond states) from A to B over the barrier at C is

' = —, (A1)

where w is the diffusion current given by

kTaA(
w=—

B -1
‘/.A cU/k'l'dq) ; (A2)

n4 is the number of bond states near A, and o4 is the bond density near A. For

n

convenience we pick well A at 4 = 0 so that

} 4
r 2 2
ng =04 ./.—.:. exp(fz‘- cos r8)dé = KUAI:(E/ ) (A3)

where Io(E/2) is a zeroth order modified Bessel function.?® Substituting the potential

in Eq. (1) into Eq. (A2) gives

ax -1
kTO’A f’ E IcTcrAr
- —_— 6)dé - ———, .
w . ( | exp( 2 Co8 T ) ) L (E/2) (A4)

The rate of passage I'' is thus given by

kT r 2
=3 (mrro(E/z)) ' )

For a single isolated barrier, in the units of the problem at hand,
2
Ao = ( -—1—) (46)
° T\2rL(E/2) )
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Table I The values of the rates A\{¥, obtained from Eq. (40); A\;X, obtained from
Eq. (41); A*, obtained from the hazard data; along with relaxation times "X and
*, obtained from A\;X and A* by use of Eq. (43); and 7° measured directly from the

simulations are presented for the systems studied.

system AK \K Ab 'l re

3-fold 5kT 0.0322 0.0281 0.0277 11.87 12.03  12.27
5-fold 5kT 0.0894 0.0780 0.0787 9.28 9.19 9.72

3-fold 8kT 0.0016 0.0024 - 140.1 - 154.
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Table II. Values of ¢;, the fraction of transitions that represent either back-reactions,

[ = 0, or coupled transitions, / = 1, 2,3, with the first, second or third neighbor.

system Co €1 C2 C3

3-fold 5k  0.030 0.16 0.06 0.03

5-fold 5kT  0.024 0.16 0.06 0.03
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Figure Captions

Figure 1. Schematic representation of the one-dimensional model. Each vector
can rotate in a plane perpendicular to a common axis. Its degree of rotation, ¢, is

measured relative to an arbitrary external direction.

Figure 2. Cy(t) and So(t) simulation results for the three-fold system with barrier
heights of 55T. Note that only at very short times do the relaxation rates of the two

correlation functions differ.

Figure 3. A hazard plot of times between transitions of the same bond state.
The expectation value of the kth cumulative hazard is plotted against the kth smallest
transition time. The inset shows a slightly enhanced transition rate at short times
which follows a short time gap, ¢, correspo-nding to the minimum time necessary for
a transition. The intercept indicated by the dotted line is a measure of the fraction of

rapid back reactions.

Figure 4. Logarithm of Cg(t) is plotted against time for the three systems studied.
The relaxation time 7 is equal to the negative of the inverse slope, and is nearly constant

for times greater than about 0.2 time units.

Figure 3. A hazard plot of times between transitions of neighboring bond states
where the expectation value of the kth cumulative hazard is plotted against the kth

ordered transition time. Plots for first(1), second(2), and third(3) neighbor transitions
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are shown. The enhanced slope at short times is due to coupled transitions. Only data

-

for relatively short time transitions is shown(compare with Fig. 3).
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